
Formal Verification in Dafny: Use of Boogie Intermediate Verification

Language for Determining the Correctness of a Program

Inaam Ahmed
Memorial University of Newfoundland

Email: inaama@mun.ca

Abstract

Formal program verification has been used as a technique to ensure

program correctness for several years. In this paper, the backend of formal

verification system, named Boogie IVL, is discussed using interactive verifier

named the Dafny. In this paper, the Dafny language and verifier are reviewed in

detail. Some important features which are unavailable in high level programming

languages like Java, C, and, Python but the Dafny language has direct support

for those features namely sets, sequences, and, termination matric etc. The Dafny

IDE and its integration available with Visual Studio is being used as verifier of

a complete software system. It supports modularity, generic classes, abstraction,

and, reverification. The Dafny compiler can produce both .NET executable code

and verification conditions for Boogie Verification Debugger. We have also

analysed the verification results of algorithms named, bubble sort, nth fibonacci

number, and, schorr waite with benefits of using Dafny IDE. When the Dafny

language was designed some essential techniques in formal verification namely,

verification-splitting and timeout had not received attention by its developers.

These features are highlighted in this paper, and we found that as compared to

other verifiers e.g VCC, Eiffel, and, Spec# the Dafny verifier IDE has more

interactive program verification system.

Keywords: Formal Verification, Dafny Verifier, SMT solver, Boogie IVL, BVD

1 Introduction

The purpose of program verification

is to provide an error free software system. A

program testing with random sets of inputs

can show the presence of hidden errors but

not their absence [1]. A critical software

system needs its mathematical accuracy

guaranteed before launching the system. In

formal program verification, computer

programs are considered as mathematical

objects and their properties are verified by

mathematical proofs. Ultimately formal

methods and mathematical techniques are

used to verify software-specifications to

provide error free software. Some computer-

based software uses simulation and testing

principles, however the exponential increase

in test patterns during the testing process

increases the duration of program testing.

The testing and simulation cannot verify

precisely the properties about the continuous

systems due to floating point and fixed-point

representation of real numbers in computers.

Testing has become insufficient to prove that

system is error free [1]. This technique of

using the formal verification method is

primarily based on fundamentals theory of

automata in theoretical computer science.

The automata theory has strictly typed

language constructs and logic calculi that can

handle complex systems with less chance of

human errors.

The Program verification can also be

performed with the help model checking, or

symbolic verification [2]. In this paper,

theorem proving methods are discussed

which are primarily used in the Dafny

verifier. This mathematical methodology of

the program verification proves accuracy of

programs hundred percent by using theorem

provers [2]. The theorem provers usually

consist of well known axioms and primitive -

inference rules. The Language like C++ or

Java has not sufficiently qualified to carry out

theorem proving, because the semantics of

these high-level languages are ambiguous,

and this ambiguity results in more than one

interpretations. These languages can not be

used in theorem proving where we need a

logical language primitive and syntax that

can be described using unambiguously

defined rules and semantics.

The Dafny tool fulfills need of the

formal verification using a programming

style named ‘design-by-contract’. It is easy to

learn and incorporates many features of good

programming language which are based on

imperative programming paradigm. During a

program verification process, states and

properties are checked at the entry and exit of

a method1 in a program. The Dafny’s

verification methodology is defined in terms

1 Method is an independent piece of code in any
programming language. In this paper, method is
used with the same meaning as methods in high-
level programming language.

of the Boogie in its backend [3], whereas the

annotations in the Dafny are written in a

format that is like a high-level programming

language one. It converts the specifications

into an intermediate verification language

named Boogie Intermediate Verification

Language2 (Boogie IVL) [3, 5, 6]. There are

numerous verification tools except the Dafny

have been designed for past few years based

on the Boogie’s verification methodology

including VCC, Eiffel, and Spec# [3]. The

Boogie generates first order verification

conditions for given specifications. These

verification conditions are given onward to

SMT solver for checking the correctness of

these conditions. The Boogie verification

debugger does provide verification error

information in detail that can be used to get

the right values of variables [4].

2 Boogie IVL

This is a common practice in a

verification process to convert a given

program into an intermediate verification

language which is more structured like

program than formulas. The verification of a

program is performed in the Boogie IVL

transforming that single program into set of

verification conditions [4]. Furthermore,

logical formulas are used to test the

verification conditions, their correctness

determines the correctness of the given

program. Some verifiers namely Spec#, C,

Dafny, Java bytecode with BML, and Eiffel

are languages using the Boogie as

intermediate verification language in their

verification function [4]. In sections 7 and 8,

we discussed the Dafny’s advancements and

advantages with its limitations.

2 The Boogie IVL and Boogie are used
interchangeably in this paper.

3 Verification Using Dafny

There are two extremes of the formal

program verification system, on one side we

try to find only the bugs in a program on the

other side we try to ensure the functional

correctness of a program is proved [2]. The

Dafny verification provides user defined

function and ghost variable to verify the

modular programs. Usually modules are

verified separately and the Dafny verifier

only knows about the interfaces of modules

visible to their caller modules [5].

Since backend of the Dafny is dependent

on the Boogie IVL then the results of the

Boogie imply the results of verification in the

Dafny. Now, the Dafny has become a

general-purpose tool for verification of

program specifications. The program

verification using the Dafny takes less time

and it responds timeout message after ten

seconds in case of missing proof [3]. The

verification of Schorr-Waite algorithm using

Dafny in fact, its entire program text

(including its full functional correctness)

took less than five seconds [5] which is

significantly smaller then the program testing

platforms and model checkers.

4 Language Features of Dafny

The Dafny has smart features which are

directly unavailable in an imperative high-

level programming language. Some

important constructs of the Dafny are given

below:

4.1 Types

The Dafny has types including

boolean, integer, reference to object, sets,

sequences, and, user-defined data types

except the sub typing feature. The sets are

used to describe the read/write frames of

program, whereas algebraic types are used

for writing specifications of a program [5].

4.2 Pre and Post Conditions

The Dafny uses precondition and

postconditions to check the correctness of a

module where pre and post condition are

declared. A Precondition is provided with the

keyword ‘requires’ followed by an

expression and postcondition is given with

keyword ensures followed with a boolean

expression. We can write more than one pre

and post conditions for a given program when

we write its specification. A failure to satisfy

any of the condition(pre/post) will give error

during the verification. The caller of a

method should provide satisfactory

precondition and same method must come up

with results satisfying post condition to

guarantee its correctness. The execution of

calling function will change the program state

which in turn update the program variables

[5]. The Parts of program or memory

locations(variables) can be changed during

method execution. These set of locations are

defined as frame of a method [7].

4.3 Ghost States

The variables in the Dafny language

can be marked as ghost fields. The ghost

variables are omitted by compiler and do not

show up into an executable code. Their

values can not be assigned to actual variables.

As long as it is concerned to verification,

ghost variables and actual variables are same.

The Ghost variables are very handy when

writing the preconditions and the post

conditions [6].

4.4 Modification

The variables in a program can be read

from and written into when executed. Dafny

checks whether system can read or write the

variable using modify clause [10]. Modify

clause declare the frame of module defining

which locations are accessible by the part of

a program. The Granularity of framing in the

Dafny is slightly different: instead of defining

frame with variables the Dafny define frames

having permission to object. The Permission

transfer is also an important concept here to

understand more deeply the mechanism of

frame accessibility. These permissions are

transferred from a caller module to a callee

and back from callee to caller having the old

ancient analogy called passing the baton. The

person who has stick can talk and others will

listen afterwards he should give stick to

someone else in the crowd and same protocol

applied repeatedly. Similarly, during

concurrent programs verification permission

transfer scenario must be maintained in a way

of passing the baton. A part of a program

having access permission to memory frame

can access the location. The Behavior of

permission transfer is explained in [7] using

different examples.

4.5 Function

A function can be declared inside class.

By default, functions in the Dafny are ghost

code, they are implemented in an executable

program code; However, functions declared

with methods (function method) in a specific

way can be used into a compiled code.

Function has type parameter function body

and required annotations (read, modify,

ensures, requires, and decreases) [10].

4.6 Sets

The Dafny language has provided finite

sets declaration. The normal set operations

are applicable except cardinality and

complement. The set operations are

converted into the Boogie operations while

converting into, e.g. A=B will be converted to

setEqual(A,B) [6].

3 Term used to denote the field testing before
launching the system.

4.7 Algebraic Sequences

The Dafny has support of sequence

declaration. The Operations on these

sequences include concatenation, selection

and finding length of sequence [6].

Application of quantification is not simple as

to deal with bound variables, operations with

sequence index involved are not flexible to

quantification.

4.8 Termination

The Loops are declared with loop

invariant. An invariant of loop must be true

during all iterations of the loop. For recording

the iterations, the Dafny uses decreases

clause to check the iterations will not go

infinite [10]. A problem with this termination

technique is to give a loop guard as

decreasing valued expression [6].

5 Dafny IDE

In past several years, an interactive

verifier has become a concern of the software

developers to prove the correctness of a

programs. These verifiers guarantee verified

software to their beta3 users and hence

customers. The verification of a program

manually is prone to error and takes long time

to traverse through all states of program

without modularity. However, the modular

programs, one verification attempt does not

determine the correctness of next turn still

checking the same module again using

manual verification. The Dafny IDE provide

an attractive approach used to verify

programs in background. The Dafny verifier

work as a component of the Dafny compiler.

The Dafny compiler can generate .exe code

from given annotations as given in Figure 1.

Figure 1 : The Dafny system composed of the Dafny

verifier and .NET compiler. The Illustration is taken

from [6].

The Dafny verifier was designed to deal

with the modular programs in a way to speed

up the verification process by eliminating the

modules which are unnecessary verify and

still waiting in verification queue [3]. A

modular program verification is achieved by

implicit dynamic frames [7]. In [3] five

snapshots of same program with minor

changes are verified with small increment of

verification time than verification of one

program due to modular verification

compatibility. Table 1 shows the numerical

values:

Table 1: Every program is verified by running 5 time

and running once with 5 snapshots gives very less

increase in verification duration [3].

The Dafny uses multithreading to

perform verification of different modules at

the same time. An essential feature of Dafny

is to report error in program with every

possible information of the program trace

where errors are present [3]. The Dafny IDE

does not only provide information about error

but suggestions to remove that error by

providing hover choices.

Recently the Dafny tool architecture has been

updated with integration of the Boogie

Verification Debugger (BVD) as shown in

Figure 2. The verifications of different

entities are isolated, as a result reverification

becomes faster and it can be completed in less

time if program was not updated.

Figure 2: Current tool architecture of Dafny IDE,

black dotted arrows showing flow of program data

and red dotted arrows show the error reporting

direction. The figure taken from [3].

6 Verified Software Construction

Since the formal verification ensures the

correctness of program. Previously we

described the design of Dafny and its IDE’s

integration with Visual Studio; however, it is

always a great concern of software

developers to ensure the correctness of

complete software. A large software system

is verified before giving it into the hands of

user (personal or commercial). Dramatic

consequences of the errors in software

systems have served as an incentive towards

the mathematical software designs and

growth in technologies based on formal

methods [5]. The Software designed for an

aerospace, avionic system, railway station, or

medical devices is needing to be ensured

about correct mathematically. In previous ten

to fifteen years serious damages caused by

software failures results into greater financial

damages and this software defected the

system availability [1].

The Dafny is also used to ensure the

reliability of the software. The verification of

complete software systems is a tedious task.

Programmers design specifications of

program relatively familiar with Hoare Logic

proposed in seminal paper by C.A.R Hoare in

1969 [8]. The verification tools provide help

to detect the presence and absence of the bugs

which results in high quality reliable

software. The development in an automated

verification system is research area of

software development providing help to

create more practical tools. A well known

“bubble sort” algorithm has verified by using

the Dafny IDE with successful verification of

its code [9]. The Dafny verify software

module by module. Its IDE helps to write the

specifications for complete program and

specifications editing platform assists

programmer to find right the specification.

After writing specification Dafny IDE allows

to verify the specification by converting the

given program into intermediate boogie

equivalent and output will be given to Boogie

verification tool integrated with Dafny. This

underlaying Boogie tool will provide

program to SMT solver named Z3. Process of

this verification is described in Figure 2.

7 Conclusion

Verification of a program is essential

before it is launched or used in an operating

environment. Following are some key points

about formal software verification:

• The Formal verification is essential

for software systems to run without

error [1].

• The verification tools that can be used

to verify the reliability of software

namely Dafny, Spec#, VCC and

Eiffel etc.

• The Dafny is popular among formal

verification tools due to its IDE

integration with Visual Studio.

• The Dafny infer the termination and

ensures it, but sometimes

programmer has to provide decrease

clause explicitly.

• The Dafny IDE can be used for

checking its correctness of a large

software system.

8 Limitations

• The type-casting feature is not

available in the Dafny.

• The formal verification tools are

dependent only on the Boogie.

• The Dafny does not take advantage of

splitting for selective verification of

the program parts.

• The verification time out in the Dafny

should be smaller, because in case of

missing proof a longer time interval

will not work.

• There is not a way to show

information in middle of the Dafny’s

verification process.

9 Future Work

In future work, we are intended to

build compiler that generate executable code

from specifications of program.

10 References

[1] Myers, G. J., Sandler, C., & Badgett,

T. (2011). The art of software testing.

John Wiley & Sons.

[2] Hasan, O., & Tahar, S. (2015).

Formal Verification Methods. In M.

Khosrow-Pour (Ed.), Encyclopedia of

Information Science and Technology,

Third Edition (pp. 7162-7170).

Hershey, PA: IGI Global.

doi:10.4018/978-1-4666-5888-

2.ch705

[3] Leino, K. R. M., & Wüstholz, V.

(2014). The Dafny integrated

development environment. arXiv

preprint arXiv:1404.6602.

[4] Leino, K. R. M. (2008). This is boogie

2. Manuscript KRML, 178(131).

[5] Leino, K. R. M. (2010, April). Dafny:

An automatic program verifier for

functional correctness.

In International Conference on Logic

for Programming Artificial

Intelligence and Reasoning (pp. 348-

370). Springer, Berlin, Heidelberg.

[6] Herbert, L., Leino, K. R. M., &

Quaresma, J. (2012). Using Dafny, an

automatic program verifier. In Tools

for Practical Software Verification

(pp. 156-181). Springer, Berlin,

Heidelberg.

[7] TS. Norvell "Concurrent Software

Verification with Transfer of

Permissions.", in Proc. The Twenty-

Sixth Annual Newfoundland

Electrical and Computer Engineering

Conference”, November 15th, 2017,

Newfoundland

[8] Hoare, C. A. R. (1969). An axiomatic

basis for computer

programming. Communications of

the ACM, 12(10), 576-580.

[9] Lucio, P. (2017). A Tutorial on Using

Dafny to Construct Verified

Software. arXiv preprint

arXiv:1701.04481.

[10] Ford, R. L., & Leino, K. R. M. Draft

Dafny Reference Manual.

