Assignment 2

ENGI 9869/7894 Adv. Concurrent Programming
Electrical and Computer Engineering

Memorial University
Due on June 15, 2019 11:59 PM

Note that the work that you turn in for this assignment must represent your
individual effort. You are welcome to help your fellow students to understand
the material of the course and the meaning of the assignment questions, however,
the answer that you submit must be created by you alone. Assignments will be
assessed on your efforts and approach you are using for particular solution.

1 Concurrent Programming

This assignment will require you to implement a concurrent program (in Java
or any of your prefer language that supports Multithreading). Please make sure
that you have the computing environment properly configured for building and
testing your program before begin. You are required to simulate two different
types of queuing systems found in daily life, namely: “Drive Through” and a
“Grocery Store”.

1.1 Drive Through [50]

The ”Drive Through” queueing system should be implemented in a class called
DriveThrough and is modeled after the lineup procedure you observe in most
drive through services. In such a queue, there are one or more lines to dis-
patch/place the order whereas only one line for making payment and order pick
ups. Multiple actions required to serve one customer by crew member(s) i.e.
taking order, taking payments, delivering ordered items. One crew member can
work on three stations sequentially or three different crew members can stay on
their assigned stations. You are required program the following specifications
in your solutions.

1. You should implement a simulator that will simulate the drive through
handling scenario, where each station (Dispatching, Payment, Delivery)of
is simulated by its own thread(crew member). The process of arriving
customers (joining a queue) will be processed by a separate thread. And
your queue should be thread safe as the queue will be accessed by multiple
threads receive the orders and dispatch them (ensure the safe writes to



your queue dispatching orders). For this example if we have two order
dispatchers then primarily two queues are merging into one queue. [10]

. Create a customer class for this implementation (and any other classes if
you need to) that will keep track of the customer, at the very minimum
keeps track of the customers arrival time, and the time needed for it to be
served. If it was not served because all queues were at maximum capacity,
then this fact should also be recorded. [10]

. You should use synchronization mechanisms such as locks, semaphores
and monitors to implement your solution to successfully join two queues
without conflict.[10]

. Make your solution fair with both dispatchers. Both should same amount
of customers. (hint: create a separate thread assigning customers to two
different dispatchers) [10]

. Your simulation need a simulated clock (to reduce the run time) for each N
minutes on your simulated clock. Your program should receive the value of
N as the command line parameter at the start of the execution. It should
output the total number of customers that arrived, the total number of
the total number of customers served, and the average amount of time
taken to serve each customer. [10]

1.2 Grocery Stores [50]

The second type of queue should be implemented in a class called Gro-
ceryQueue, which is modeled after the customer checkout queue system
in the popular grocery stores e.g. Dominion, Walmart etc.. Here we have
multiple checkout station in the store and each checkout station has its
own queue. When a new customer proceed to checkout, it is the customers
choice to select a queue among the available ones. For this assignment you
can consider, the customer will always select the queue that has the low-
est number of customer waiting. If there are multiple queue with lowest
number of customer waiting, the new customer can choose one randomly.

1.2.1 Implementation Requirements

You may assume that it takes between 300 and 600 seconds to serve any
customer (uniform distribution) on both of 1.2 , and that new customers
arrives between every 50 and 100 seconds (also uniformly distributed).
Also, both type of the queues has limited capacity. If a customer arrives
and see the capacity of the queue(s) full, customer waits for a maximum
of 20 seconds. If no space become available within 20 seconds, he/she
will move around and and come again after 600 seconds and again try to
join the queue, second time he/she waits for 40 seconds and keeping in



consideration of his/her second try he/she leave the store without service
if queue is still full.

()

You should implement a simulator that will simulate the customer
handling situations for both of the cases mention above, where each
of the serving stations and checkout stations are simulated by its
threads. The process of arriving customers (joining a queue) will be
processed by a separate thread. And your queue should be thread
safe as the queue will be accessed by multiple threads to add and
remove customers (ensure the safe writes to your queue). [20]

Your simulation need a simulated clock (to reduce the run time) and
run each simulation separately, for each N minutes on your simulated
clock. Your program should receive the value of N as the command
line parameter at the start of the execution. For each type of queue,
output the total number of customers that arrived, the total number
of customers who were forced to leave without being served, the total
number of customers served, and the average amount of time taken
to serve each customer. [20]

Create a customer class for this implementation (and any other classes
if you need to) that will keep track of the customer, at the very min-
imum keeps track of the customers arrival time, and the time needed
for it to be served. If it was not served because all queues were at
maximum capacity, then this fact should also be recorded. [20]

You should use synchronization mechanisms such as locks, semaphores
and monitors to implement your solution. You can create two sepa-
rate programs to simulate two separate queue, or you can put both
in one program and use another command line parameter to execute
one of the simulation at a time. [10]

In case of 1.2 create a self-service queue with capacity of serving
two customers at once(two self checkout terminals) and consider the
queue for customers unable to join DominionQueue. Assume the self
service takes 400 to 600 seconds for one customer. How many cus-
tomers you can save with the implementation of this queue(consider
the simulation details 1.4)? [30]

1.3 Submission Details

You are required to submit your source code, along with the pro-
grams simulation for 4 hours (240 minutes or 14400 seconds) of the
simulation when there are exactly 3 checkout stations (and thus 3
queues) in the case of the DominionQueues class, and when the max-
imum length of a DominionQueue is just 2 (this excludes the cus-
tomer being served). You must ensure you add the N as command
line parameter so that while testing we can run it for any number of
minutes we want.



